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A new method for scalar instanton spectrum investigation 
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Abstract. A new method is proposed for the investigation of the instanton structure of 
scalar field-theoretic models. It is based on rewriting the initial nonlinear field equation in 
spectral form and solving the latter by means of the spectral type linear equations. 

1. Introduction 

There has been great interest in the study of instantons in various Euclidean field 
theories. Recall that instantons are the non-trivial regular field equations with the 
action functional being stationary and finite. Great progress has been achieved in the 
study of instanton structure of gauge field theories. It was shown that the set of all 
instanton solutions could be divided into classes differing by values of topological 
quantum number n = 0,1, . . . (Belavin eta1 1975). Instantons of any number it can be 
interpreted as the solutions of a certain variational problem for the absolute minimum. 
This allows one to classify gauge instantons and develop a technique for their explicit 
construction. 

There were several indications of the riches of an instanton structure in scalar 
theories (Lipatov 1976, Fubini 1976, Ushveridze 1977,1979,1980) but the absence of 
a general method made its investigation difficult. Several particular methods (e.g. the 
method of mechanical analogy (Lipatov 1977, Bukhvostov and Lipatov 1977, Ush- 
veridze 1977, 1979)) work only for instantons whose equations can be reduced to 
one-dimensional form. We propose a general method that can be used, in principle, for 
the investigation of the instanton spectrum in scalar theories for any dimension. 

We state our method for the rather wide class of Euclidean scalar field-theoretic 
models in the finite range, although it can be expanded for the infinite ranges too. It is 
based on the observation that all scalar instantons similar to gauge ones can be divided 
into classes differing by a certain whole number n. This ‘quantum’ number is not of the 
same nature as the topological one, but nevertheless for either of them the varirtional 
problem for the absolute minimum,can be constructed, and instantons similar to the 
gauge theories are the solutions of these problems. 

In § 2 we present our definitions and state the problem. In § 3 we formulate our 
method, which consists of two main parts. The first part is concerned with the 
transformation of the initial nonlinear field equation into spectral form, while in the 
second part we solve the spectral nonlinear equations by means of certain classes of 
spectral type linear equations, obtain the upper estimates etc. In § 4 the properties of 
the instantons are discussed. In § 5 we present the computational part of the method. In 
5 6 examples are shown to illustrate the method and the results of computer calculations 
are given. 
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2. The problem 

Consider the linear differential operator 2 of second order in the bounded closed range 
0 (with the boundary r) of D-dimensional (D 2 1) Euclidean space: 

where p a p ( x )  is a symmetric, positive definite in SZ ,  D X D matrix of continuously 
differentiable functions in SZ ,  q(x) is a non-negative and continuous function in SZ .  

Let A be the set of scalar functions (fields) 4(x )  which are twice differentiable in SZ 
and satisfy one of the following two boundary conditions: 

where n p  is a normal unit vector on r. Hence, the operator 2 is Hermitian and positive 
on A.  

The field-theoretic model of a scalar field 4 is defined by its action functional: 

where w ( x )  is a positive and continuous finite weight function in S Z ,  and v is the degree 
of interaction nonlinearity (v > 2). (The function w ( x )  includes the coupling constant.) 

It is known (Nikolsky 1977) that if the degree of nonlinearity v is related to the 
dimension D by the conditions 

2 < v < 2D/ (D - 2) (4a) 

2 < v < a 3  for 1 . ~ 0 ~ 2  (4b 1 

for D > 2  

or 

then for any function 4 E A the Sobolev inequality is satisfied: 

where C is the positive number called the Sobolev constant and is independent of 4. 
(The value of C is completely defined by D, CL, v, p a p  (x), q ( x ) ,  w ( x )  and constraint (2), 
and cannot be increased.) Throughout the paper condition (4) is supposed to be 
satisfied. 

Let us now introduce the notion of instanton. By an instanton we mean any function 
4 E A for which the action functional S [ 4 ]  is stationary (i.e. S S [ 4 ]  = 0) and finite 
( S [ 4 ]  <a), while an instanton spectrum is the set of all instantons 4 and their actions 

The instantons in the model (3) are the solutions of the following nonlinear elliptic 

24 =w14Jy-2c$, (6) 

with the boundary constraints of type (2) and the condition of action finiteness which we 
write in the form 

S[41. 

field equation: 
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(Formula (7) can be obtained by multiplying both sides of (6) by 4, integrating and 
comparing with (3).) 

Our aim is to investigate an instanton structure of the model (3), i.e. (1) to ascertain 
the set of instantons, (2) to classify this set and to predict some of their a priori properties 
and (3 )  to present the regular procedure for obtaining instantons and their actions 
numerically to any required accuracy. 

3. The method 

The method is divided into two parts. First, we transform the initial nonlinear equation 
(6) into the spectral nonlinear equation. For this purpose it is sufficient to use in (2), (6) 
and ( 7 )  a new function $, 

4 * = ( [ 2 v / ( v  - 2) ]S} ’ / ” ’  

and to introduce a new quantity 

As a result we obtain the nonlinear spectral equation 

i l l ,  = %wl$lz’-z$ (9) 

with boundary constraints of type (2) and the additional integral condition 

It is easy to see that equation (9) with constraints (2) and (10) is the natural nonlinear 
generalisation of the linear spectral equations. (If v = 2 and w ( x )  = 1, then (9) trans- 
forms to a Schrodinger type equation and (10) becomes the usual condition for 
wavefunction normalisation.) The solutions $ and % of (9), in analogy with the linear 
case, we call eigenfunctions and eigenvalues, respectively, and the set of solutions we 
call the spectrum of (9). 

The instanton spectrum of the initial model (3) can be easily reconstructed from the 
spectrum of equation (9) by means of formulae (8). 

Let us now consider the second main part of our method: how to solve the spectral 
nonlinear equation (9). The idea is to construct the set of variational problems for the 
absolute minimum whose solutions are the eigenfunctions Sl, and eigenvalues 8 of (9). 

Consider the set B of functions p(x) which are continuous in SZ and satisfy the single 
integral condition 

lo wlpl” dDx := 1, 

and for any p ( x )  write the spectral linear equation 

with constraints (2) and (10). 
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Theorem 1. Let R be bounded and condition (4) be satisfied. Then the spectrum of (12) 
exists, and is positive and discrete. The proof can be found in Ushveridze (1981). 

Let E, [ jp (x ) l ]  and & [ l p ( x ) I ]  be the nth eigenvalue and the corresponding nth 
eigenfunction of (12). (The usual ordering is assumed.) We consider E,[ lpl ]  ( n  = 
0, 1 , .  , .) as a set of functionals defined on B. 

Our central point, which is the basis of our proposed method, is formulated in the 
following theorem. 

Theorem 2. If pn, , (x)  is any function that makes the functional E,[ jpl ]  stationary on B at 
given ‘n’,  then 

c ~ n , n ( x )  = 4 n [ l ~ n , a ( ~ ) I I  and %,,a = E n [ I ~ n , a ( x ) l I  (13) 

are the solutions of the nonlinear spectral equation (9). We give here the scheme of the 
proof. 

Suppose the condition of the theorem is satisfied. Thus when substituting p,,, for 
PL,a E B, 

the deviation in E , [ ] p I ]  must vanish to first order in E for any f(x). (It can be shown that 
for any n the eigenvalue E, I ]  is non-degenerate.) When computing perturbatively 
(for the non-degenerate case), one can see that the deviation vanishes for any function f 
only if 

b n , a  ( x  ) I  = I $n [ I  ~ n , a  ( X  ) / ] I .  (15) 

Substitution of (15) in (12) shows that &,, = &[lp,,,l] is the eigenfunction and g,,, 
E,[lp,,,l] is the eigenvalue of the nonlinear spectral equation (9). Thus the statement is 
proved. 

Let us now consider the relation (15), which can be interpreted as a functional 
equation for functions I pn,,I. It is easy to see that the set of equations (15) supplemented 
by relations (13) is equivalent for n = 0, 1, . . , to the single equation (9). In fact, any 
solution of (15) leads to the solution of (9) and (vice versa) any solution of (9) 
corresponds to the solution of (15) for the particular n. This allows one to consider n as 
a ‘quantum’ number by means of which it is possible to divide the set G of all solutions 
of (9) into non-intersecting classes G, (G, is defined by the set of solutions of (15) for 
the particular n ) .  

Theorem 3. Let Cl be bounded and condition (4) be satisfied. Then in any class G, there 
exists at least one solution. This solution (we call it the main solution in the class Gn and 
use the notation $,,,, and %,,,, for it) corresponds to the function pn,,, that realises the 
absolute minimum of E,[ lpI ]  on B. The proof can be found in Ushveridze (1981). 

Hence we have shown that the boundedness of 52 and condition (4) are sufficient 
conditions for the existence of a countable instanton spectrum in the model (3). 

Instantons and their actions that are related to Q,,, and by means of formulae 
(8) are denoted by &,a and S,,,, respectively, while we keep the notation G, for the 
classes of &,,,. 
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Until now, we did not know the inner structure of the G,, and the nature of the 
number a that distinguishes solutions within G, cannot be ascertained by means of our 
method. 

4. Properties of instantons 

As can be seen from formulae (8) and (13), all the properties of instantons and their 
actions originate from the corresponding properties of eigenfunctions and eigenvalues 
of linear spectral equations of type (12). 

We show several typical properties. 
(a) The node surfaces of 4, E G, divide the range R into not more than n + 1 parts 

for D a 2 and n b 2. When either D = 1 and n is arbitrary or D is arbitrary and n = 0 or 
n = 1, these surfaces divide into n + 1 parts precisely (due to the oscillation theorem 
and its generalisation (Mikhlin 1968)). 

(b) The sequence of the main eigenvalues S,,o does not decrease and So,o= 

The first statement follows from the chain 
[(U -2)/2v]c2vl(”-2). 

v -- 2 U-2 v / ( v - 2 )  = S,,o = - (min E, [ Ip I]) u l ( v - 2 )  s - (mjn E,+tl[bll) -Sn+1,o; 
V B  2v 

(16) 
the second one follows from another chain 

(c) For all functions p E A 

This inequality allows one to obtain the upper estimate on S,,o by solving a linear 
equation (12) for any convenient function p ( x ) .  

(d) For large n 

(19) 2 v / (  u - 2 ) D  S , ,  - n 

To obtain this formula we use ( 8 b )  and an asymptotic expression for E,[lpl] in the 
large-n limit (see for example Courant and Hilbert (1931)). 

5. Computational methods 

As demonstrated in Q 3, the problem of searching for the main instantons and their 
action is transformed to the problem of minimisation of functionals E,[(pl] on B. We 
use here the method of steepest descent. 
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For fixed n we consider the sequence {pCi)(x)} ( i  = 0 , 1 , 2 , .  . .) defined by the 
recurrence relations 

where Q'" are normalising factors to satisfy the condition (1 1) for all p'". 
The sequence { p " ) }  gives rise to the sequence of the nth eigenfunctions i,bn[lp'')l] and 

eigenvalues E,[lp("l] of the linear equation (12). 
It is easy to show, using perturbation theory, the Holder inequality (Korn and Korn 

1968) and conditions (10) and (111, that for sufficientlysmall E the sequence of E,[Ip( ') j ]  
decreases and that the transition from p'" to p ( ' + ' )  defines the direction of steepest 
decrease in B of E,[ lp l ] .  More detailed analysis shows that the sequences 

and 
4(fj = *n[ (p ' i ) / " [ (p '1 )1] ) -1 ' 'y -2) ,  i = 0, 1 , .  . , , (21a) 

(21b) 

converge to the main instanton q5n,o and its action S,l,O. 

convenient: 
In order to find instantons for n = 0 the following iterational method is more 

(22) 

It is easy to show (using the abovementioned technique) that the corresponding 
sequence of Eo[jp(i)l] decreases. In fact, 

P ( i + l j  = / i ,b [ I  ( O I ] l  
p'" E B, O P  ' 

= Eo[lp('+l)l]. (23) 
The convergence is guaranteed by its boundedness from below. At  the same time the 
sequences (21a) and (21b) converge to 4 0 , ~  and SO,,, respectively. 

6. Examples 

We show here two examples. The first is one-dimensional and can be solved exactly: 
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The corresponding spectrum is the following: 

where K(;) is the whole elliptic integral (Abramowitz and Stegun 1964). We point out 
that there is only one solution in each class G,. 

Let us now investigate model (24) by means of our method and compare the results 
with (25). We seek the solution 4 in the form of a finite series: 

Hence, our method is reduced to an algebraic one, and all calculations can be performed 
on a computer. When increasing the number N and the number of steps NST in the 
iterational procedure (20) or (22), the solution of the problem can be found with any 
required accuracy. 

The results of computation of the first few solutions are presented together with the 
exact values: 

In two dimensions we consider an example of the same type: 

7 4(0, x2) = 4(3 ,  x 2 )  = 4(x1,0) = 4(Xl, 5 )  = 0. -+- - -4  8% 8% 3 

ax: ax;- 

We seek the solution 4(xl ,  X Z )  in the form of a finite series: 

We do not know whether exact solutions of this model exist, and present here only 
our results: 
N = 3 ,  N = 50, S0,o = 0.04879, 

b\:f' = 2.4665 x lo-', b!:?' = 7.0004 X lop5, bi:$ = -4.5098 x 
b'0'0' = b'0'0' 2,1 = 8.7070 x lo-', biqe' = 7.0234 x lo-", 2.3 -3.5820 X lo-', 

b$qf' = -1.5813 x b'O.0' 3,2 = 7.2447 X b$o$' = 7.0819 x lo-', 
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N = 3 ,  N = 20, Sl,o = 0.18 17, 

bit?’ = -4.225 x 

bi:f’ = 2.146 x loF3, 

bgf ’  = 6.026 x 

All the computational work was done in the Institute of Physics of the Academy of 
Sciences of the Georgian SSR. 

Finally we shall note that the proposed method can be expanded for the investiga- 
tion of field-theoretic models in infinite ranges and for more complicated nonlinearities. 

bjtt’ = 3.532 x bi:$’ = 6.076 x 

b?;”’ = 3.004 x 

bit;”’ = -3.542 x 

bit$’ = 1.644 x 

bif;”’ = -7.695 x 
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